

Robotics in Computer Science Education

Prof. Emanuele Menegatti
Intelligent Autonomous Systems Lab (IAS-Lab)
Dept. of Information Engineering
School of Engineering
University of Padova, Italy

Intelligent Autonomous Systems Lab IAS-Lab People

Staff

1. Enrico Pagello, Full Professor of Computer Science

2. Emanuele Menegatti, Associate Professor

3. Michele Moro, Assist. Professor

Students

- 1. Filippo Basso, PhD cand.
- 2. Mauro Antonello, PhD cand.
- 3. Riccardo Levorato, PhD cand.
- 4. Roberto Bortoletto, PhD stud.
- 5. Elisa Tosello, PhD stud.
- 6. Nicolò Boscolo, PhD stud.

About 10 Master-level students

Post-Docs

- 1. Luca Tonin, Post Doc
- 2. Stefano Ghidoni, post-doc
- 3. Stefano Michieletto, post-doc
- 4. Matteo Munaro, post-doc

Collaboratorations

- Antonio D'angelo and Claudio Mirolo, Assist. Prof.s at Udine University
- Stefano Carpin, Assoc. Prof. at Univ. of California (USA)
- Hiroshi Ishiguro, Prof. Univ. of Osaka (JAPAN)
- Tamio Arai, Prof. Univ. of Tokyo (Japan)
- Frank Dellaert, Prof. Georgia Teach Inst. (USA)
- Wolfram Burgard, Prof. Univ. of Freiburg (Germany)
- Stefano Soatto, Prof. UCLA
- Jeff Bruke, Assistant Dean UCLA
- Radu Rusu, CEO of Open Perception

Topics & equipment

IAS-Lab @ UniPD

Research topics

- Autonomous robotics
- Humanoid robotics
- Camera network applications
- Educational Robotics

Lab equipment

- •3 robot manipulators
- •9 humanoid robots
- •5 mobile robots
- Distributed network of intelligent cameras
- •3D vision cameras

Recent Funded Projects @ IAS-Lab

- EU-FoF 2012
 - FibreMap Automatic Mapping of Fibre Orientation for Draping of Carbon Fibre Parts
- EU-FoF 2011
 - Thermobot Autonomous robotic system for thermographic detection of cracks
- EU-RfSME 2010
 - 3DComplete Efficient 3D Completeness Inspection
- EU-FSE 2009:
 - iSP Innovative Simulation and Programming of robotics workcells
 - iDVS2 Intelligent Distributed Audio and Video Surveillance System
- EU-FSE 2008:
 - iDVS: Intelligent Distributed Vision System for surveillance and quality inspection
- EU-Comenius2 2006:
 - TERECoP: Teacher Education on Robotics-Enhanced Constructivist Pedagogical Methods
- University of Padua 2009:
 - Mobility, Perception, and Coordination for a Team of Autonomous Robots

WORKCELLSIMULATOR

SOFTWARE SOLUTION THAT ALLOWS TO MANAGE AN ENVIRONMENT FOR THE SIMULATION OF A ROBOTIC WORK CELL.

REAL-TIME

IT IS AN HARDWARE/SOFTWARE SYSTEM CAPABLE OF CONTROLLING MACHINERY THAT ARE USUALLY CONTROLLED BY A MICROPROCESSOR OR A PLC.

QUALITY CONTROL

QUALITY VISUAL INSPECTION IS A SOFTWARE PACKAGE THAT PROVIDES THE AUTOMATIC DETECTION OF DEFECTS IN ITEMS THAT COME OUT OF THE PRODUCTION LINE.

VIDEO SURVEILLANCE

SMART VIDEO SURVEILLANCE IS A SOFTWARE PACKAGE THAT IMPLEMENTS THE AUTOMATIC PROCESSING OF IMAGES PROVIDED BY CCTV SURVEILLANCE CAMERAS.

People: 8 employees + 4 collaborators

Money: 600.000 Euro annual turnover

News

VenMec 2011 - Padua, 25-28 November 2011

Read more...

BIMEC 2011 - Rho, 16-19 November 2011

Robotica 2011 - Rho, 16-19 November 2011

BlechExpo - Stuttgart, 6-7
June 2011

Gijon, 27 - 28 April 2011 – 3DComplete Project Meeting

Motivations for Educational Robotics

Robotics as tool for other disciplines

Robotics as a subject

Robotics as extracurricular activity

Robotics for inclusion

Germany Case study 1: Roberta Project

CURRENT TOPICS

CONCEPT

OFFER

NETWORK

Publishing Notes | Contact

DEUTSCH

Roberta - It does work!

I hear and I forget. I see and I remember. I do and I understand.

Germany Case study 2: First Year Undergraduate

Freshman Engineers Build MATLAB Powered LEGO Robots PROF. TIL AACH, & PROF. ALEXANDER BEHRENS, RWTH AACHEN UNIVERSITY

In a lab "MATLAB® meets LEGO Mindstorms," more than 300 first-year students at RWTH Aachen University build and program their own robots.

Examples of projects:

- robot can translate a brief message into Morse code.
- locate a bottle on a table and determine how full it is.
- robots park themselves autonomously

IAS-Lab expertise with Educational Robotics

TERECOP Project

You are here: TERECoP>Products

Book: Teacher Education on Robotics-Enhanced Constructivist Pedagogical Methods

Editor: Dimitris Alimisis

Published 2009 by School of Pedagogical and Technological Education (ASPETE)

ISBN 978-960-6749-49-0

Robotics in School Education

(Review of research literature and of the existing situation in the 6 participating countries)

Study: A methodology for designing robotics-enhanced constructivist learning for seconda basic principles, learning objectives and strategies

Study: A methodology for designing robotics-enhanced constructivist learning for secondary appropriate technology-based environment

Study: A methodology for designing robotics-enhanced constructivist learning for secondary school students: the bus route

Study: Methodology for evaluation and assessment of the learning activities

Pilot training curriculum

Pilot tra

Pilot tra

Pilot tra

In brief:

- 1.Open Access Book (CreativeCommons lic.)
- 2. Curriculum for teacher course...

...about introducing robotics in class as a learing tool

Michele Moro, Emanuele Menegatti, Francesco Sella e Mario Perona

IMPARARE CON LA ROBOTICA

Applicazioni di problem solving

"Learning with Robotics"

» Chap. 1
Educational Robotics and its roots

» Chap. 2 Introduction to the educational robot

- » Chap. 3
 Robotics for STEM
 - 12 lab activities of increasing complexity
- » Appendix: NXT-GTD: mark-up language for NXT-G iconic language

Long-life learning course for school teachers

"Introducing Educational Robotics in standard curricula in schools" two editions: 2013 & 2014

50+ teachers from:

- 1/3rd Primary schools
- 1/3rd Middle schools
- 1/3rd High schools (science and language)
 & Technical Schools

Educational Robotics at Primary school: 3rd year

1. Building the robot:

- 3D mental representation
- understanding directions
- Interpret the correct sequence of instructions

- Introduction to programming
- Mental representation of motion
- Left & right spatialization

3. Program a path for the robot following road signals::

- The LEGO NXT-G Language
- More complex program environment
- Procedural programming
- Basic flow charts
- Programming constructs

4. Sense obstacles and traffic lights:

- Robot's sensors (light and ultrasound)
- More complex flow charts
- Programming constructs

Robotics at The University

- A mix of theoretical lectures in class and practical experiences in the laboratory
- Lectures deal with robotics fundamentals: perception, motion planning, kinematics, and navigation
- In lab, software tools are introduced and students are requested to implement some algorithms presented in the theoretical lessons.

Robotics in the last year of Master in Computer Science

- In our CS master curriculum, just one course about Robotics
- 5 incremental <u>experiences in a</u> <u>constructivist approach</u> to tackle
 the complexity which is behind the
 building of autonomous robots

- Didactical objectives
 - teach about autonomous robots
 - Experience with wheeled robots (NXT) and humanoid robots (Robovie-X)
 - Improve programming skills and good programming practice
 - Experience with complex software framework

LEGO Mindstorm NXT

- Lego Mindstorms NXT is a flexible and cheap architecture with known capabilities
- It is widely adopted for undergraduate & master robotics courses
- It is technically documented (for example, you can develop your own I²C-interfaced sensors and define proprietary BT-supported message-passing protocols)
- It has already been integrated in some known framework (e.g. URBI, MRS, ROS and others)

- NXT may be programmed in NXC, a procedural C-like language
- Limitations when using NXC
 - low level of structuring, only procedural paradigm
 - strictly targeted to this type of robot
 - modularity is not perceived as a relevant issue
 - tendency to develop ad-hoc and not very general solutions
 - no powerful subsidiary tool available (e.g. simulation, data plotting, debugger etc.)

```
task plav()
 while (true)
    PlayTone(TONE A4, MS 500);
    Wait (SEC 1);
task drive()
 while (true) {
    OnFwd(OUT A, 50);
    Yield();
task main()
  Precedes (drive, play);
```


- Choosing a widely spread framework you get several advantages (and some risks):
 - more robots and more programming language
 - you can exploit powerful added components and tools
 - you start practicing with a 'real' development environment, with a lot of documentation and supported by a large community
 - you have to face the complexity of a large framework
 - you have to do it in the temporal perspective of a university lab
- With respect to other large frameworks, ROS is recently becoming a standard de facto
- The introduction of ROS did not ask for a complete reformulation of experiments performed in previous years

Experience 1 Obstacle avoidance

- To avoid obstacles (cones)
- A first obstacle must be avoided, whereas a second one represents a place where to wait for a while and then return to the start position

- To get acquainted with robot, motion, sensors and other basic stuffs
- To work with basic ROS modules: master, nodes, fundamental functionalities
- To use a simple visualizer showing the 3D model of the adopted NXT construction (tribot)
- To develop new modules in ROS, exploiting the publisher/subscriber mechanism

Computer science objectives

- To review basic concepts like data structures and classes
- To analyze the ROS package and message structures
- Publisher/subscriber communication paradigm via callback mechanism
- Though, this first example can be easily implemented in procedural programming, an object oriented solution was also promoted

Experience 2: Path planning

The experience

- To navigate into a map of NxM cells, partly occupied by obstacles
- The grid forces a path with segments parallel to the map edges, ending at the goal cell and avoiding the obstacles
- A second NXT equipped with a touch sensor is placed in the goal cell and used as a button to send a 'stop' to the first robot
- Obstacles may be fixed or movable

- To choose a suitable path planning algorithm, including obstacle avoidance
- To elaborate simple sensor data using ROS modules
- To effectively design the solution as a set of ROS interconnected modules
- To think about some fundamental topics like localizing and mapping, multiple-robot coordination

Computer science objectives

- To appreciate the value of a well-structured software design
- To map real elements (the robot, the map) onto software objects
- To implement the data structure for a dynamic map
- To solve the problem of the two similar, but different in behavior, communicating robots through a suitable level of abstraction of the robot class

Experience 3 Perception using computer vision

The experience

- The light sensor is replaced by an omnidirectional camera)
- Use of a camera calibration algorithm (Calculate height and inclination of the mirror's axis)
- First step: to reproduce the same output of the light sensor module
- Second step: exploit the full potential of the camera (odometry)

- To choose the most suitable algorithm(s)
- To face the tradeoff
 between complexity and
 accuracy
- To face the complexity of elaborating omnidirectional images

 To exploit the ROS designing approach (i.e. to develop an image acquisition module connected to a image processing module)

Computer science objectives

- To extend the previous sensor module design (exploiting code modularity, class inheritance, good design patterns)
- Students who had already developed a good software design in the previous experience, could more simply apply a principle of reuse
- The Others have to reimplement the software and are fostered to reimplement everything

Small Humanoid Experience

Exp 1: Motion remapping

IAS-LAB

Exp 1: Motion remapping

IAS-LAB

Computer science objectives

- Get acquinted with RGB-D sensors and large data structures (RGB-D images as 3D point clouds)
- Experience the power of the publisher/subscriber communication paradigm
- Implement a publisher/subscriber system

Exp 2: Robot stabilization

IAS-LAB

Computer science objectives

IAS-Lab

- Implement algorithm with feedback and error correction
- Experience with soft real-time systems
- This final result can be achieved in time only if good software prectices have been implemented and good software reuse is exploited

Q1. During the experiences of the robotics course I exploited knowledge acquired in other courses that I had not put into practice.

Evaluation of didactical impact

Evident advantages when using ROS

- Students are forced to organize their software into modules, reuse their data structures and classes, exploit class inheritance
- They experienced the role of the message sharing mechanism in a robotics framework
- When problems are correctly formalized and the software design of the solution is appropriated....

...students feel the difference!

Analysis of the students' software

- The software produced by 16 students (in groups of two) was analyzed to extract quality indicators in terms of:
 - potential of code reuse (functions/methods applicable in different situations)
 - fusion of common or similar characteristics into general data structures
 - modeling of real entities into suitable abstracting classes

	1 st exp.	2^{nd} exp.	3^{rd} exp.
Code reuse	75%	100%	100%
Structured data	38%	88%	100%
Classes	63%	88%	88%

- A questionnaire distributed to the students with four levels of evaluation (Very much, Enough, A little, Not at all)
- Aspects evaluated:
 - exploitation of students' programming background skills and software engineering
 - effort spent in developing the experiences
 - closeness with future job activities
- For every question we represent the overall results with a pie chart

Students' satisfaction

Conclusions

The results of the questionnaire show that choices made while designing the course had a good impact over several important aspects:

- The introduction of ROS has resulted an incitement to use OOP concepts
 - ROS framework effectively forced students to adopt a more modular approach
- The overhead undergone to learn a new framework is compensated by the later ease to develop code of increasing complexity
- Students gave value to team working
- Working with a known 'real' industrial framework is a rewarding effort for master students
- Students appreciated the hands-on approach of the course, in spite of the increasing of the work load
- They also appreciated the way experiences gradually increase in complexity
- Good response both regarding how students' expectations were met and the improvements in robotics and programming skills.

Conclusions

- » Need for curricula in project based learning with team work
- Student should be invited to explore, observe, manipulate, ask questions, formulate hypothesis, collect data and biuld his/her own knowledge on the topic (constructivism)
- » Teachers are enforced by their tutorial role and role of "learning guide"
- » Useful to initiate external collaborations with companies and scientific dissemination initiatives.

Robotics in Computer Science Education

Prof. Emanuele Menegatti
Intelligent Autonomous Systems Lab (IAS-Lab)
Dept. of Information Engineering
School of Engineering
University of Padova, Italy

Karlsruhe October 24, 2014